Langsung ke konten utama

BILANGAN PRIMA



Salah satu himpunan bagian dalam bilangan bulat adalah bilangan prima. Semua anggota bilangan prima termasuk dalam anggota bilangan bulat. Bilangan prima dimulai dari 2 hingga seterusnya dan faktor pembaginya adalah 1 dan bilangan itu sendiri. Misalkan 5 apakah termasuk bilangan prima atau bukan? Jawabannya adalah ya, 5 adalah bilangan prima, karena 5 hanya bisa dibagi 1 dan 5. Kalau 6? Jawabannya adalah bukan, karena 6 bisa habis dibagi 1, 6, 2, dan 3. Berikut urutan bilangan prima pertama yang kurang dari 1.000.

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997

Untuk menentukan bilangan prima, bisa menggunakan saringan Eratosthenes, dicontohkan pada gambar di bawah ini.

Sumber Inspirasi: Wikipedia

Komentar

Postingan populer dari blog ini

STATISTIK INFERENSIAL

Statistik inferensial adalah cabang statistik yang digunakan untuk membuat kesimpulan atau prediksi tentang populasi berdasarkan data sampel. Jika Anda kesulitan menemukan materi tentang topik ini, berikut adalah beberapa poin penting yang bisa menjadi panduan: Konsep Utama Statistik Inferensial Populasi dan Sampel : Populasi: Seluruh individu atau item yang menjadi fokus penelitian. Sampel: Subset dari populasi yang digunakan untuk analisis. Parameter dan Statistik : Parameter: Nilai yang menggambarkan karakteristik populasi (misalnya, rata-rata populasi, μ \mu μ ). Statistik: Nilai yang dihitung dari sampel (misalnya, rata-rata sampel, x ˉ \bar{x} x ˉ ). Distribusi Sampling : Distribusi probabilitas dari statistik sampel. Contoh: Distribusi rata-rata sampel. Inferensi : Estimasi : Estimasi Titik: Menghasilkan satu nilai (contoh: rata-rata sampel sebagai estimasi rata-rata populasi). Estimasi Interval: Memberikan rentang nilai (contoh: interval kepercayaan). Uji Hipotesis : Hipotesis ...

Statistik Quick Count

Quick Count atau hitung cepat adalah metode penghitungan suara dalam suatu pemilihan (seperti pemilihan umum, pemilihan kepala daerah, atau pemilu lainnya) yang dilakukan dengan cara mengambil sampel suara dari tempat pemungutan suara (TPS) secara acak dan menghitung hasilnya secara cepat. Tujuannya adalah untuk memberikan gambaran awal hasil pemilihan dalam waktu singkat, jauh sebelum hasil resmi diumumkan oleh penyelenggara pemilu. Pola perhitungan quick count menggunakan pendekatan statistika untuk mengambil sampel yang representatif dari populasi suara di seluruh tempat pemungutan suara (TPS). Berikut adalah tahapan dan pola dalam perhitungan quick count: 1. Penentuan Sampel TPS Pemilihan TPS Secara Acak TPS yang akan dijadikan sampel dipilih menggunakan metode acak (random sampling) atau metode sampling tertentu, seperti stratified random sampling . Representatif : Sampel dipilih sedemikian rupa sehingga mewakili distribusi geografis, demografis, dan karakteristik pemilih secara...

Matematika Terapan

  Matematika Terapan adalah cabang matematika yang digunakan untuk memecahkan masalah nyata di berbagai bidang seperti fisika, teknik, ekonomi, biologi, keuangan, ilmu komputer, dan lainnya. Pendekatan ini mengintegrasikan teori matematika dengan aplikasi praktis untuk menyelesaikan tantangan spesifik. Beberapa topik utama dalam matematika terapan meliputi: 1. Persamaan Diferensial Digunakan untuk memodelkan fenomena yang melibatkan perubahan, seperti dinamika populasi, aliran fluida, dan sistem kontrol. Contoh: d y d t + k y = 0 \frac{dy}{dt} + ky = 0 d t d y ​ + k y = 0 (Persamaan ini sering muncul dalam model peluruhan eksponensial.) 2. Matematika Keuangan Analisis risiko, penilaian derivatif, bunga majemuk, dan optimalisasi portofolio. Contoh: Model Black-Scholes untuk penilaian opsi. 3. Optimasi Mencari solusi terbaik dalam situasi dengan keterbatasan sumber daya. Contoh: Linear Programming (Metode Simpleks), optimasi non-linear. 4. Analisis Numerik Mencari solusi mendekati ...